

EENA - Android ELS Webinar

Matching emergency communication with ELS (AML)

android-emergency-location@google.com android.com/els

Alastair Breeze, ELS Tech Lead abreeze@google.com

Understand how to effectively match ELS (AML) data to emergency calls

- 1. ELS in 2022
- 2. Methods of ELS Transmission
- 3. Challenges of HTTP
- 4. Case Study from Henning Schmidtpott (Germany ELS Partner)
- 5. Getting Started

ELS in 2022

Enable Android users to get help from emergency responders more effectively *wherever* and *whenever* they need it.

Recap: How ELS Works

Emergency call initiated by Android device Using FLP, ELS computes location on-device; data sent directly to endpoint as Data SMS or HTTPS message Endpoint is set up and managed by ELS Partner, who is responsible for making ELS data available to Emergency Services (push or pull). **AML** - Advanced Mobile Location, open standard for sending emergency location (*supported by Android ELS*)

ELS Endpoint: a *SMSC or HTTPS server* maintained by partner that can receive ELS emergency location data

ELS Partner: carrier/MNO, government or public safety vendor that meets ELS <u>partner requirements</u>

PSAP/ECC (Public Safety Answering Point/Emergency Communications Center): call center & dispatch control for emergency services

Google's Responsibility

Partner's Responsibility

ELS progress

ELS Launched

ELS transmission:75%SMS only22%SMS + HTTP3%HTTP only

Methods of ELS Transmission

Why does it matter?

2022 | Confidential and Proprietary

android

	SMS	HTTP
Basic Location Information	\checkmark	\checkmark
Advanced Location (e.g. Altitude)	\times	\checkmark
Additional Data (e.g. language, car crash)	\times	\checkmark
Latency	8s	1.2s ⁶ x faster!
Error Rates	Good	Great ² x lower!
Roaming Error Rates	Bad	Okay 2.2x lower!
Endpoint complexity / cost	Generally high	Low
Device Network Requirements	Cellular	Cellular (data) or WiFi
Contains Phone Number	Always	Sometimes

Richer Data: Altitude/Z-axis

Кеу	Value	Units	Example	7/2/
location_altitude	Altitude (WGS84)	meters	4	
location_vertical_accuracy	Vertical accuracy	meters	2.5	
location_floor	Floor label (as in elevator button floor label - may be non-numeric)	-	2	

no elevation estimate

Richer data: Additional Emergency Information

More coming soon!

Device Language

💎 ⊿ 🛑 10:50

Car Crash Detected android

Challenges with HTTP

If HTTP is so great, why is adoption slow?

Challenges with ELS over HTTP

Missing Phone Number

Sometimes the phone number field in HTTP is missing, making it hard to match to incoming calls.

This is because some SIM cards are unable to detect this.

We are working on improving this!

Connectivity

Requires internet connectivity. Harder to zero-rate URLs, however it does consume very tiny amounts of data!

Also works with WiFi!

Infrastructure

Might require some updates to your infrastructure to add HTTP to your existing endpoint.

However, HTTP servers are generally quite easy to stand up!

The best solution is hybrid!

With matching on SMS & HTTP on IMEI

- For limited data / connectivity use cases
- Shares phone number when missing from HTTP

- Faster!
- Richer data (altitude, etc)
 - Works with Wi-Fi
 - Better roaming

Henning is going to talk about how this can be done!

Case study for Germany

with Henning Schmidtpott henning.schmidtpott@ils-freiburg.de

android

Getting Started

How Google can help you launch HTTP

Takeaways

Summary

- Matching on IMEI can be done today: HTTP is ready!
- Benefits include:
 - Faster
 - Easier to setup
 - Additional emergency information

Actions

- Reach out to the Android ELS team at: <u>android-emergency-location@google.com</u> We can help discuss rollout plans, timelines and support your needs!
- 2. Read our devsite:

<u>developers.google.com/android/els</u> on how implement your HTTP endpoint.

android

Questions & discussion

android-emergency-location@google.com android.com/els

